Identifying Critical Beliefs About Sleep in Primary Insomnia

Colleen E. Carney, PhD; Jack D. Edinger, PhD

Duke University Medical Center, Durham, NC; Durham VA Medical Center, Durham, NC

Subject Objective: Maladaptive beliefs about sleep are associated with insomnia and are assessed with the Dysfunctional Beliefs and Attitudes about Sleep scale (DBAS). Three studies explored which DBAS items (1) maximally differentiated people with good sleepers, (2) declined with cognitive behavior therapy (CBT), and (3) were related to other clinical improvement indexes.

Design: Data from previous studies were analyzed to evaluate the above hypotheses.

Participants: The total sample (N = 332) was comprised of experimental and treatment-seeking people with insomnia and good sleepers ranging from 20 to 79 years of age (mean ± SD 51.3 ± 14.7).

Results: The analyses of variance of the 30 items of the DBAS in Study 1 suggested that 16 items differentiated insomnia sufferers from good sleepers. In Study 2, 8 items showed significantly greater changes in response to CBT than alternate therapies. However, only 2 of these items were among the 16 items that discriminated insomnia sufferers from good sleepers in Study 1. In Study 3, declining scores on 15 of 30 DBAS items in response to CBT were related to 1 or more indexes of clinical improvement.

Conclusion: The 16 beliefs of the DBAS-30 that best discriminated insomnia sufferers from good sleepers related to helplessness and hopelessness in the insomnia group. CBT addressed some of these beliefs, although some beliefs relating to helplessness remained relatively elevated. These residual beliefs should be investigated further, as they may confer cognitive risk for future insomnia and imply ways to improve current CBT strategies.

Keywords: Beliefs about sleep, insomnia, cognitive behavior therapy

Citation: Carney CE; Edinger JD. Identifying critical beliefs about sleep in primary insomnia. SLEEP 2006;29(4): 444-453.

Disclosure Statement
This was not an industry supported study. Dr. Edinger served as a site PI for a multi-site study designed to test an investigational device for the treatment of insomnia supported by Respironics Corporation; has received honoraria for speaking engagements supported by Sepracor; and has participated in speaking engagements supported by Fission Communications. Dr. Carney has indicated no conflict of interest.

Submitted for publication July 2005
Accepted for publication November 2005

Address correspondence to: Colleen E. Carney, PhD, Duke Clinic Sleep Laboratory, Duke University Medical Center, Durham, NC 27710; Tel: (919) 681-8730; E-mail: colleen.carney@duke.edu

SLEEP, Vol. 29, No. 4, 2006

Beliefs About Sleep in Insomnia — Carney and Edinger
primary insomnia sufferers and normal sleepers into subgroups
of polysomnographically (PSG) defined good and poor sleepers
prior to conducting DBAS comparisons. Thus, additional stud-
ies comparing pure primary insomnia groups with good sleepers
groups would be helpful.

An alternative line of research has examined DBAS changes in
response to cognitive behavioral therapy (CBT), a treatment that
attempts to replace rigid and self-defeating sleep-related beliefs
with more flexible or sleep-favorable cognitions (e.g., belief-tar-
gested treatment). Although limited in number, studies of this na-
ture have provided some support for the notion that sleep-related
beliefs of primary insomnia sufferers do, indeed, change over the
course of treatment with well-proven CBT. At least 2 investiga-
tions\(^ 1\) have shown that DBAS total scores change from the be-
tinning to the end of CBT treatment. However, since these stud-
ies did not conduct item-by-item analyses, they did not identify
the specific beliefs that change with treatment. In contrast, Espie
and colleagues\(^ 1\) showed that 10 DBAS items measuring worries
about acute and long-term insomnia effects and fears about loss of
control over sleep changed significantly over the course of CBT.
These findings provide some initial insight into potentially impor-
tant and malleable cognitive targets in primary insomnia, but ad-
ditional studies of this nature that control for natural regression to
the mean and nonspecific effects of treatment would be useful. To
the extent that rigid and self-defeating sleep-related beliefs sus-
tain primary insomnia, it is perhaps most important to determine
how changes in such beliefs relate to other indexes of clinical
improvement. Given this consideration, some research has been
conducted to relate the changes primary insomnia sufferers show
in their sleep-disruptive beliefs to the changes they show on other
important disease-specific outcome measures over the course of
therapy. Studies\(^ 1\) have suggested that reductions in selected sub-
scale scores on the full DBAS or the total score on a short form
of the DBAS are associated with both objective and subjective
improvements on other sleep-related outcome measures. Because
these studies analyzed changes in subscale or total DBAS score,
little is known about which specific items are most germane to
improvements on other indexes of clinical improvement. Thus,
it is unknown as to which specific dysfunctional beliefs are most
relevant to the overall treatment responsiveness of primary in-

As suggested by this discussion, a number of potentially use-
ful methodologic probes have been utilized to assess the role of
maladaptive sleep-related beliefs in both the maintenance and re-
mission of primary insomnia. Each of these probes may be useful
for elucidating the roles of dysfunctional beliefs in the primary-
insomnia process, yet each has its limitations. Moreover, previous
studies using these strategies are somewhat limited in the speci-
city and comprehensiveness of their findings. As a result, investi-
gations that address some of the limitations of previous studies,
and simultaneously employ the 3 probes described to identify the
specific beliefs instrumental in primary insomnia, could be use-
ful.

The current report describes an investigation designed to ad-
ress these objectives. Specifically, this investigation included 3
studies designed to identify the specific maladaptive beliefs most
germane to the perpetuation and treatment of primary insomnia.

In the initial study, DBAS item responses of age-matched groups
of primary insomnia sufferers and normal sleepers were com-
pared to identify the items that statistically discriminated these

Study 1

As noted above, previous studies\(^ 1\) have shown that insomnia
sufferers produce higher and presumably more pathologic scores
on the DBAS overall and on various of the rationally derived
DBAS subscales originally proposed by Morin.\(^ 6\) Such findings
are consistent with the notion that the global cognitive themes
measured by the DBAS may play an important sustaining role in
the overall insomnia process. However, it remains unclear how
well each of the individual DBAS items discriminate primary in-

SLEEP, Vol. 29, No. 4, 2006

SLEEP, Vol. 29, No. 4, 2006
participants underwent a thorough screening process that included struc-
tured psychiatric and sleep interviews, a medical exam, thyroid
(thyroid-stimulating hormone, level) screening, and 1 to 2 nights
of screening PSG to rule-out occult primary sleep disorders. The
insomnia sufferers recruited were adults between the ages of 20
and 79 who reported sleep complaints consistent with Diagnos-
tic and Statistical Manual for Mental Disorders (DSM) criteria
for primary insomnia (e.g., 6 months or more of difficulty initi-
tating or maintaining sleep or nonrestorative sleep at least 3 times
per week, with accompanying daytime deficits). The normal
sleepers enrolled were an age-matched sample of adults who (1)
reported no sleep complaints and (2) evidenced no major medical
or psychiatric condition that might have contributed to an unre-
ported, occult sleep disorder.

Excluded from the final sample were study participants who
(1) had a medical condition (e.g., rheumatoid arthritis, thyroid dis-
ease) that compromises sleep; (b) had a current major psychiatric
(Axis I) condition on the basis of a Structured Clinical Interview
for Psychiatric Disorders (SCID); (c) showed sedative hypnotic
dependence and were unwilling or unable to abstain from these
medications while in the study; (d) were taking anxiolytics, anti-
depressants, or any other psychotropic medication; or (e) had an
apnea-hypopnea index ≥ 15 or a periodic limb movement-related
arousal index ≥ 15 during on screening PSG. In addition, we ex-
cluded prospective insomnia sufferers if they met structured in-
terview criteria for another sleep disorder in addition to primary
insomnia, whereas we excluded normal sleepers who met criteria
for any sleep disorder.

Through use of these selection criteria, a sample of 208 study
participants were enrolled and subsequently completed the DBAS,
other questionnaires, and a series of home- and laboratory-based
evaluations of sleep and daytime performance. Three study en-
rollees failed to complete the DBAS properly and were excluded
from the sample chosen for the current study. The final study
sample, thus, consisted of 205 adults. Of these, 101 (52 women)
met selection criteria for primary insomnia, whereas the remain-
ing 104 (52 women) were noncomplaining normal sleepers. The
mean age of the primary insomnia sample was 49.2 (SD = 17.1)
years, whereas the mean age of the normal group was 47.3 (SD
= 16.8) years. The primary insomnia sample was composed of 76
Caucasians, 17 African Americans, and 5 Asian Americans, and 1
Native American; the normal sleepers included 85 Caucasians, 14
African Americans, 4 Asian Americans, and 1 Native American.

PSG Screening

All participants underwent a total of 3 in-home and 3 in-lab
nights of PSG monitoring with one half of the men and women
in each group undergoing lab recording first, and the other half
completing home monitoring first. Per preplanned study proto-
cols, the first night (older cohort aged 60+ years) or initial 2 (re-
mainder of the sample) PSG nights (home or lab) were used to
screen out those exceeding the above-mentioned apnea-hypopnea
index or periodic limb movement arousal index cutoffs for study
inclusion. PSG monitoring included 2 electroencephalogram
channels (C1-A2, O1-Cz), bilateral electrooculogram, submental
electromyogram, 2 channels of anterior tibialis electromyogram
(right and left leg), and a nasal/oral respiration thermistor. All
PSGs were scored using standard scoring criteria for assign-
ment of sleep stages, identification of respiratory events (e.g., apneas,
hypopneas) and identification of periodic limb movements and
periodic limb movement-related arousals. Although PSG typi-
cally includes additional respiratory measures (respiratory effort,
oximetry) to detect breathing abnormalities, it was thought that
monitoring of nasal/oral airflow along with our thorough inter-
view screening for apnea would be sufficient to identify most
cases with an apnea-hypopnea index above the study’s exclusion-
ary cutoff.

Measure

The DBAS scale was used to identify specific sleep-relat-
ed beliefs that discriminated the insomnia sufferers and normal
sleepers comprising this study’s sample. Each of the 30 items
consists of a statement that poses a sleep-related belief or attitude
pertinent to 1 of these 5 cognitive themes. A 100-mm analog scale
(i.e., horizontal line) labeled “strongly disagree” at its far left ex-
reme and “strongly agree” at its far right extreme accompanies
each item and is used by respondents to indicate their degree of
endorsement. When completing the DBAS, respondents are re-
quired to draw a vertical line through the point on the 100-mm
scale to indicate their degree of agreement or disagreement with
each item. The distance in millimeters between the far-left ex-
treme of the analog scale and the response line then is used at the
item’s “score.” With 1 exception, all items are structured so that
higher scores (i.e., stronger item agreement) connote more dys-
functional beliefs.

Procedure

The participants included in the current investigation com-
pleted the DBAS on 1 occasion while enrolled in the larger study
from which they were obtained. Participants’ scores for each of
the 30 DBAS items were extracted and placed in an electronic
file (spreadsheet database) for subsequent analyses. To control
for type-I error, a 2 (insomnia vs normal sleeper) x 30 (DBAS
items) multivariate analyses of variance (MANOVA) was first
conducted. Group comparisons were then conducted via analyses
of variance (ANOVAs) for each of the 30 DBAS items to follow-
up significant MANOVA effects.

RESULTS

There was a statistically significant group effect on the
MANOVA, .029 = 9.85, p < .001. Follow-up ANOVAs found a
statistically significant group effect on 16 of the 30 pretreatment
DBAS items; thus, there were 16 items that discriminated good
sleepers from those with insomnia. Examination of the means
revealed that insomnia sufferers had higher scores (e.g., more-
rigid or sleep-disruptive beliefs) than good sleepers on each of
the discriminating items. Four of the 5 thematic subscales of the
DBAS contained discriminating items. All 9 of the items of the
Control/Predictability scale significantly discriminated those with
primary insomnia from those without. Neither of the 2 items of the Causal
Attributes scale showed a statistically significant group effect on
ANOVA. Table 1 contains group means and SEM and the re-
sultant F statistics and p values from the ANOVAs.

SLEEP, Vol. 29, No. 4, 2006
Study 2

Study 2 employed a method similar to that reported by Espie for identifying mechanistically important beliefs and attitudes measured by the DBAS. Specifically, in this study we attempted to identify DBAS items that changed significantly over the course of a CBT designed in part to alter insomnia sufferers’ rigid or otherwise maladaptive sleep-related thinking. To control for normal regression to the mean, DBAS item score changes shown by a CBT-treated group were compared with the DBAS item change scores of similar patients who received alternate forms of behavioral insomnia therapy that did not specifically target sleep-related cognitions.

METHOD

Design

This study used a randomized parallel-group design. The participants were selected from 3 different randomized clinical trials designed to evaluate the efficacy or effectiveness of CBT for insomnia. These clinical trials were approved by either the Duke University or VA Medical Center Institutional Review Board, and all participants provided written informed consent to participate at the time of their study enrollments. All participants received study-related screening and therapy services free of charge and were either provided parking free of charge or were compensated for parking expenses while enrolled in the study.

Participants

Participants included in this study were selected from those who underwent CBT or an alternate active insomnia therapy (relaxation training, sleep hygiene therapy) as part of their research participation. Participants drawn from 2 of the clinical trials were obtained largely through advertisements in local newspapers, whereas those drawn from the third trial were predominantly physician referred. Standard study screening procedures were used for selection of all participants and included structured sleep and psychiatric interviews and 1 week of sleep-log monitoring. In addition, participants drawn from the 2 larger trials underwent 1 night of PSG monitoring in their homes to rule out sleep apnea and periodic limb movements. The PSG equipment, monitoring montage, and scoring procedures for these studies were similar to those described in Study 1 above.

The inclusion criteria were similar to those used for the primary insomnia group from study 1 (e.g., 6 months or more of difficulty initiating or maintaining sleep or nonrestorative sleep at least 3 times per week, with accompanying daytime deficits). Those enrolled in the larger 2 trials were additionally required to be 40 years of age or older and have a mean wake time after sleep onset (WASO) > 60 minutes during 1 screening week of sleep-log monitoring. Participants drawn from the third trial were all adults over the age of 20 who had mean total WASO > 60 minutes during a 1-week screening sleep-long monitoring period.

Excluded from these trials were individuals (1) with medical or physical conditions that compromise sleep, (2) who, on the basis of a Structured Clinical Interview, met DSM-IV criteria for a major psychiatric disorder, (3) who obtained a score < 27 on the Folstein Mini-Mental Status Exam conducted during screening, (4) who were unwilling to abstain from sleep medications during the study, and (e) taking anxiolytics or antidepressants. Additional criteria used in the larger 2 trials excluded individuals (1) with periodic limb movements during sleep that were associated with ≥15 arousals per hour (from diagnostic PSG), (2) with 15 or more episodes of sleep apnea per hour (from PSG), and (3) who reported chronic histories of little or no sleep or who underestimated total sleep time by 50% or more during an initial diagnostic PSG study.

A total of 128 (54 women) individuals met all selection criteria.

Table 1—Comparisons of Insomnia Sufferers’ and Normal Sleepers’ DBAS Item Responses

<table>
<thead>
<tr>
<th>Theme/items</th>
<th>Insomnia Sufferers</th>
<th>Normal Sleepers</th>
<th>Group Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of Insomnia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Insomnia seriously affects health</td>
<td>50.2</td>
<td>3.0</td>
<td>32.0</td>
</tr>
<tr>
<td>12. Poor sleep disturbs daytime mood</td>
<td>50.0</td>
<td>3.0</td>
<td>34.5</td>
</tr>
<tr>
<td>15. Afraid of dying in sleep</td>
<td>9.9</td>
<td>2.1</td>
<td>5.1</td>
</tr>
<tr>
<td>21. Lack of energy due to poor sleep</td>
<td>62.2</td>
<td>2.5</td>
<td>46.1</td>
</tr>
<tr>
<td>30. Cancel obligations after poor night’s sleep</td>
<td>20.3</td>
<td>2.6</td>
<td>12.3</td>
</tr>
</tbody>
</table>

Control/Predictability

8. Worried may lose control of sleep | 31.3 | 2.8 | 9.7 | 1.5 | 45.8 | .0001 |
16. Bad night follows good night’s sleep | 23.3 | 2.8 | 5.2 | .9 | 39.1 | .0001 |
17. Poor night’s sleep affect whole week | 17.8 | 2.1 | 9.9 | 1.7 | 8.5 | .004 |
19. Can’t predict sleep | 69.5 | 2.8 | 35.4 | 3.2 | 64.8 | .0001 |
20. Can’t manage negative sleep consequences | 43.3 | 2.6 | 27.9 | 2.5 | 18.5 | .0001 |
22. No control over racing mind | 48.0 | 3.1 | 19.3 | 2.2 | 57.6 | .0001 |
23. Can lead satisfactory life despite insomnia | 70.2 | 2.3 | 60.0 | 2.8 | 8.38 | .004 |
25. Insomnia prevents enjoying life | 28.5 | 2.9 | 12.2 | 2.1 | 20.4 | .0001 |
28. Sleep is worsening and no one can help | 14.6 | 1.7 | 7.2 | 1.3 | 12.56 | .0005 |

Sleep-Promoting Practices

11. Better off taking sleeping pills | 25.7 | 2.7 | 16.0 | 2.1 | 7.9 | .006 |
13. Should sleep as well as partner | 31.5 | 3.0 | 19.0 | 2.3 | 11.0 | .001 |

DBAS refers to Dysfunctional Beliefs and Attitudes about Sleep Scale.
for enrollment in their original investigation and had sufficient DBAS data to be included in the current study. The mean age of the sample was 54.3 (SD = 10.7) years. One hundred nineteen of the participants were Caucasian, 8 were African American, and 1 was Hispanic. The majority (n = 100) of these participants received CBT as their assigned treatment, whereas the remaining 28 participants received progressive muscle relaxation training (n = 20) or generic sleep-hygiene instructions (n = 8) per random assignment in their respective studies.

Treatment Protocols

Doctoral-level clinical psychologists served as therapists in all 3 clinical trials from which participants were drawn for the current investigation. In delivering the various treatments, therapists strictly followed manualized therapy protocols designed to standardize each treatment’s presentation. In all cases, treatment was delivered in individual sessions with the initial sessions lasting 45 to 60 minutes and subsequent sessions (if any) lasting 15 to 30 minutes.

Individuals comprising the CBT group were drawn from 3 different clinical trials. Twenty-three (9 women) were drawn from a study9 designed to test the general efficacy of CBT. These individuals all were provided 6 CBT sessions scheduled at weekly intervals. A total of 70 (35 women) were drawn from a second study21 designed to compare various CBT “doses.” These individuals received 1 session (n = 16), 2 sessions (n = 16), 4 sessions (n = 23) or 8 sessions (n = 15) of CBT scheduled over an 8-week period. The remaining 7 individuals were drawn from a third study20 designed to test the clinical effectiveness of an abbreviated CBT intervention. These individuals each received two 25-minute CBT sessions scheduled 2 weeks apart.

Individuals comprising the comparison treatment group were drawn from the first or third studies described above. Twenty (9 women) of these were enrolled in the first study9 and received progressive muscle relaxation training21 delivered in 6 weekly sessions. The remaining 8 (1 woman) individuals were enrolled in the latter study and were provided sleep hygiene instructions in two 25-minute sessions schedule 2 weeks apart. Weighted averages showed that the average number of treatment sessions (mean = 4.86 sessions) received by the 28 patients in this comparison group was similar to the average number of sessions (mean = 4.12 sessions) received by the CBT group.

Table 2—Comparisons of CBT and Other Treatment on DBAS Item Change Scores Before and After Treatment

<table>
<thead>
<tr>
<th>Theme/items</th>
<th>CBT Mean</th>
<th>CBT SEM</th>
<th>Other Treatment Mean</th>
<th>Other Treatment SEM</th>
<th>Group Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of Insomnia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Poor sleep will interfere with daytime activities</td>
<td>-22.11</td>
<td>2.58</td>
<td>-7.25</td>
<td>4.09</td>
<td>7.73, .006</td>
</tr>
<tr>
<td>12. Poor sleep disturbs daytime mood.</td>
<td>-13.43</td>
<td>2.33</td>
<td>0.14</td>
<td>4.04</td>
<td>7.69, .006</td>
</tr>
<tr>
<td>Control/Predictability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Worried may lose control of sleep</td>
<td>-20.48</td>
<td>2.83</td>
<td>0.75</td>
<td>5.9</td>
<td>11.75, .0008</td>
</tr>
<tr>
<td>Sleep-Promoting Practices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Need to catch up on poor sleep</td>
<td>-13.4</td>
<td>3.19</td>
<td>0.96</td>
<td>5.51</td>
<td>4.36, .04</td>
</tr>
<tr>
<td>6. Spend more time in bed to get more sleep</td>
<td>-7.23</td>
<td>2.92</td>
<td>7.12</td>
<td>4.45</td>
<td>5.71, .02</td>
</tr>
<tr>
<td>Sleep Needs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Need 8 hours of sleep to function</td>
<td>-20.03</td>
<td>3.19</td>
<td>-1.61</td>
<td>3.94</td>
<td>8.31, .005</td>
</tr>
</tbody>
</table>

CBT refers to cognitive behavior therapy; DBAS, Dysfunctional Beliefs and Attitudes about Sleep Scale.

Procedure

The study participants all completed the DBAS prior to treatment and again on 1 or more subsequent occasions as one of several study-related treatment-outcome measures. Those enrolled in the initial treatment-efficacy study9 and dose-response study21 were asked to complete the DBAS midway through treatment, immediately following the completion of treatment, and again at a 6-month follow-up assessment. Those drawn from the remaining study were asked to complete the DBAS immediately after completing their 2-session therapy and again at a follow-up scheduled 3 months later. DBAS item change scores (treatment endpoint – baseline value) were then computed for each of the 30 DBAS items. To control for type-I error, a 2 (CBT vs other treatment) x 3 months later. DBAS item change scores (treatment endpoint – baseline value) were then computed for each of the 30 DBAS items. To control for type-I error, a 2 (CBT vs other treatment) x 30 (DBAS items) MANOVA was first conducted using the DBAS change scores as the dependent variables. Treatment-group comparisons (CBT vs comparison treatment) were then conducted via ANOVAs for each of the 30 DBAS item change scores to follow-up significant MANOVA effects.

RESULTS

The MANOVA on DBAS change scores between groups (CBT vs comparison treatment) revealed a statistically significant group effect, F(12, 326) = 10.72, p = .001. There was a significant group effect on follow-up ANOVAs for 8 of the 30 DBAS item change scores. Of the 8 items with a significant ANOVA group effect, 3 were characterized as discriminating items in Study 1. There were 2 items or beliefs relating to the Effects of Insomnia, 2 relating to Control/Predictability, 3 relating to Sleep-Promoting Practices, and 1 relating to Sleep Needs. Table 2 contains the change scores for the 8 beliefs that showed significant group effects.

Study 3

Implicit to CBT approaches is the assumption that reduction in dysfunctional beliefs and attitudes about sleep should contribute to improvements in insomnia-related symptoms or measures. As noted earlier, there is evidence that global improvements on the DBAS are associated with improvements in other important outcome measures among primary insomnia sufferers undergoing CBT intervention. However, previous studies of this nature did not examine the relationship between changes on individual
DBAS items and changes in other clinically important treatment-outcome measures. As a result, the specific sleep-related beliefs that are most germane to positive clinical outcomes remain relatively unexplored. In this study, we related pretreatment-to-posttreatment change scores on each of the 30 DBAS items to several indexes of clinical improvement among a sample of CBT-treated primary insomnia sufferers.

METHODS

Design and Participants

This study used a between-group cross-sectional research design. The 100 CBT-treated participants employed in study 2 were retained for this study.

Table 3—Summary of Group Comparisons (Improved Versus Unimproved on ISQ, SES, and WASO)

<table>
<thead>
<tr>
<th>Theme/items</th>
<th>ISQ-defined Improved</th>
<th>ISQ-defined Unimproved</th>
<th>Group Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of Insomnia</td>
<td>Mean</td>
<td>SEM</td>
<td>Mean</td>
</tr>
<tr>
<td>12. Poor sleep disturbs daytime mood</td>
<td>-18.12</td>
<td>3.24</td>
<td>-8.74</td>
</tr>
<tr>
<td>Control/Predictability 8. Worried may lose control of sleep</td>
<td>-29.02</td>
<td>3.84</td>
<td>-11.94</td>
</tr>
<tr>
<td>16. Bad night follows good night’s sleep</td>
<td>-7.06</td>
<td>3.37</td>
<td>4.26</td>
</tr>
<tr>
<td>17. Poor night’s sleep affect whole week</td>
<td>-8.96</td>
<td>2.56</td>
<td>0.94</td>
</tr>
<tr>
<td>20. Can’t manage negative sleep effects</td>
<td>-22.08</td>
<td>4.63</td>
<td>-6.3</td>
</tr>
<tr>
<td>22. No control over racing mind</td>
<td>-22.18</td>
<td>3.69</td>
<td>-4.2</td>
</tr>
<tr>
<td>28. Sleep is worsening; no one can help</td>
<td>-6.56</td>
<td>2.67</td>
<td>3.92</td>
</tr>
</tbody>
</table>

Causal Attributes	Mean	SEM	Mean	SEM	F	p value
7. I should stay in bed and try harder	-26.58	3.79	-13.38	3.79	6.06	.02
27. Medication is the only solution	-8.08	2.48	-1.22	2.48	7.72	.007

Causal Attributions	Mean	SEM	Mean	SEM	F	p value
14. Insomnia is due to aging	-6.5	3.42	3.9	3.42	4.64	.04
1. I need 8 hours to function	-28.88	4.35	-11.18	4.35	8.25	.005

Sleep-Promoting Practices	Mean	SEM	Mean	SEM	F	p value
Effects of Insomnia	-19.5	3.19	-7.36	3.19	7.22	.008
Control/Predictability 8. Worried may lose control of sleep	-26.4	3.93	-14.56	3.93	4.53	.04
12. Poor sleep disturbs daytime mood.	-8.68	2.57	0.66	2.57	6.62	.01
17. Poor night’s sleep affect whole week	-21.18	4.66	-7.2	4.66	4.5	.04
22. No control over racing mind	-16.98	3.45	0	3.45	12.13	.001
Causal Attributions 24. Insomnia due to a chemical imbalance	-25.86	3.82	-14.1	3.82	4.75	.03
Sleep-Promoting Practices	-5.3	2.71	2.66	2.71	4.31	.04

Causal Attributions	Mean	SEM	Mean	SEM	F	p value	
7. I should stay in bed and try harder	-28.88	4.35	-11.18	4.35	8.25	.005	
Sleep-Promoting Practices	Mean	SEM	Mean	SEM	F	p value	
Effects of Insomnia	18. Can’t function without adequate sleep	-8.93	2.79	-0.76	2.57	4.65	.04
Control/Predictability	-23.11	4.81	-6.59	4.44	6.36	.01	
20. Can’t manage negative sleep effects	-12.17	3.44	-0.76	3.17	5.95	.02	
28. Sleep is worsening; no one can help	-12.17	3.44	-0.76	3.17	5.95	.02	

ISQ refers to Insomnia Symptom Questionnaire; SES, Sleep Self-Efficacy Scale; WASO, wake after sleep onset.

Beliefs About Sleep in Insomnia

Participants completed paper-and-pencil sleep logs each morning during a 2-week pretreatment baseline, the treatment phase itself, a 2-week posttreatment assessment, and a 2-week follow-up scheduled either 3 or 6 months later. Sleep-log items included questions about the previous night’s bedtime, rising time, sleep-onset latency, and WASO (middle and end of the night).

Outcome Questionnaires

All participants completed the Insomnia Symptom Questionnaire (ISQ) and Sleep Self-Efficacy Scale (SES) prior to treat-
ment, at a midtreatment assessment, during a posttreatment assessment, and again at a final follow-up time point. The ISQ is a 13-item questionnaire designed to assess the presence or absence of nocturnal and diurnal insomnia symptoms. A 100-mm horizontal response line labeled “not at all” at the left extreme and “frequently” at its right extreme accompanies each item. The SES contains 9 items designed to assess perceived control over sleep. The SES items include similar 100-mm analog scales labeled “Not at all [confident]” at their left extremes and “Very [confident]” at their right extremes. For both instruments, respondents draw a vertical line through the point on each item’s analog scale to indicate their responses. Both instruments are scored in a manner similar to the DBAS, and a mean score across all items is used to represent the global score. Higher scores on the ISQ reflect more-pronounced insomnia symptoms, whereas higher scores on the SES connote more-perceived control over sleep.

Procedure

Pretreatment Pearson product-moment correlation coefficients for DBAS, ISQ, SES, and mean sleep-log WASO were calculated to ensure independence of the constructs. Data retained for the current study included (1) DBAS item difference scores (treatment endpoint – baseline value) for each of the 30 DBAS items, (2) ISQ difference scores calculated by subtracting participants’ pretreatment ISQ score from the ISQ score obtained at the study endpoint, (3) SES difference scores computed in a manner similar to the ISQ difference scores, and (4) the change in WASO from pretreatment to the study endpoint expressed as a percentage of the pretreatment or baseline value. In the event that follow-up data were missing, a standard intent-to-treat data imputation (i.e., last value carried forward) was used to estimate endpoint data for the DBAS items, the ISQ, the SES, and sleep-log WASO. These data were obtained for each participant and placed in an electronic database for analyses.

Subsequently, a series of 3 sets of analyses were conducted. In each analysis, the sample was first divided into “improved” and “unimproved” groups based on the degree of change they showed on the selected outcome measures over their study participation.

Table 4—Summary of Significant Findings Across Studies 1, 2, and 3

<table>
<thead>
<tr>
<th>Item</th>
<th>Study 1 (Insomnia vs Normal)</th>
<th>Study 2 (CBT change)</th>
<th>Study 3 (ISQ change)</th>
<th>Study 3 (SES change)</th>
<th>Study 3 (WASO change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep Needs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. I need 8 hours to function</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Because getting older, need less sleep</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Should sleep like bed partner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep-Promoting Practices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Need to catch up on poor sleep</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Spend more time in bed to get more sleep and feel better</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. I should stay in bed and try harder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>9. Because getting older, should go to bed earlier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>11. Better off taking sleeping pills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>26. Nightcap helps sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>27. Medication is the only solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Effects of Insomnia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Without sleep, may have a nervous breakdown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Insomnia seriously affects health</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Poor night’s sleep will interfere with activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>12. Poor sleep disturbs daytime mood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>15. Afraid of dying in sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>18. Can’t function without adequate sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>21. Poor energy/functioning due to poor sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>29. Poor sleep affects physical appearance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>30. Avoid/cancel obligations after poor sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Control/Predictability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Worried may lose control of sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>16. Bad night follows good night’s sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>17. Poor night’s sleep affect whole week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>19. Can’t predict sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>20. Can’t manage negative sleep consequences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>22. No control over racing mind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>23. Can lead satisfactory life despite insomnia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>25. Insomnia prevents enjoying life</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>28. Sleep is worsening and no one can help</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Causal Attributions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Insomnia is due to aging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>24. Insomnia is due to a chemical imbalance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

aDenotes items contained in the 10-item version of the DBAS
bDenotes items contained in the 16-item version of the DBAS

CBT refers to cognitive behavior therapy; ISQ, Insomnia Symptom Questionnaire; SES, Sleep Self-Efficacy Scale; WASO, wake after sleep onset.
For the first set of analyses, the sample was dichotomized on the basis of their ISQ difference scores. Those 50% showing the greater amount of decline in ISQ scores were labeled “improved,” whereas the remainder were labeled “unimproved.” For the second set of analyses, a median split of the SES change scores was used to dichotomize the sample into “improved” and “unimproved” groups. The 50% with the greatest increase in SES scores were labeled “improved,” whereas the remaining participants were classified as “unimproved.” For the final set of analyses, change in sleep-log WASO was used to dichotomize the sample. Those who showed a 50% or greater reduction in WASO from pretreatment to their study endpoint were labeled “improved,” whereas the remaining individuals were labeled “unimproved.” For each of these classification methods, we conducted a 2 (improved vs unimproved) x 30 (DBAS items) MANOVA using the DBAS difference scores as the dependent variables. Group comparisons (improved vs unimproved) were then conducted via ANOVAs for each of the 30 DBAS item change scores to follow up significant MANOVA effects.

RESULTS

The DBAS was significantly correlated with the ISQ ($r = .49$, $p < .001$) and SES ($r = -.35$, $p < .001$). The R^2 coefficients were quite low, thus the linear relationship between the DBAS and the ISQ and the SES accounted for relatively little of the shared variance (24% and 12%, respectively). The MANOVA showed a statistically significant group effect (ISQ-improved vs ISQ-unimproved) on DBAS difference scores, $F_{1,98} = 26.19$, $p < .001$. Follow-up ANOVAs revealed that ISQ-defined improved patients had significantly greater pretreatment-to-posttreatment DBAS item reductions on 13 of the 30 DBAS items than did those classified as unimproved on the ISQ. All 5 subscales of the DBAS were represented among these 13 items. The MANOVA comparing those categorized as improved on the SES versus those unimproved on SES revealed a statistically significant group effect, $F_{1,98} = 14.40$, $p = .0003$. Follow-up ANOVAs revealed that those classified as improved on the SES after treatment had significantly greater pretreatment-to-posttreatment increases on 8 of the 30 DBAS items than did those classified as unimproved on self-efficacy. Of these 8 items, 4 related to Control/predictability, 2 related to Sleep-Promoting Practices, 1 related to the Effects of Insomnia, and 1 related to Causal Attributions. Lastly, the MANOVA comparing those categorized as improved according to a 50% pretreatment-to-posttreatment decrease in WASO versus those unimproved on WASO (less than a 50% decrease) likewise revealed a significant group effect, $F_{1,98} = 14.04$, $p = .003$. On follow-up ANOVAs, WASO-improved patients had significantly greater DBAS change scores than those unimproved on the WASO index on 3 items. One item related to the Effects of Insomnia, and the other 2 items were related to Control/predictability.

Table 4 contains a summary of the results across all 3 studies. There were only 2 items that were significant across each of the 3 investigatory probes and 5 items that were nonsignificant across all probes used. The former 2 items related to insomnia effects and the controllability/predictability of sleep, whereas the latter 5 items related to beliefs about sleep needs, sleep-promoting practices, and the potential deleterious effects of sleep loss.

DISCUSSION

This study was conducted to identify the beliefs that are key in sustaining insomnia. We hypothesized that key items would be those that (1) discriminated those with primary insomnia from those without, (2) declined with belief-targeted therapy, and (3) related to other measures of clinical improvement following belief-targeted treatment. This omnibus hypothesis was confirmed for only 2 items related to the themes of control/predictability of sleep and the consequences of insomnia. Partial support for the omnibus hypothesis was found with 11 items that evidenced significant findings in at least 2 of the 3 probes. These items represented all DBAS thematic subscales except the subscale assessing presumed causes of insomnia. The current findings have implications for understanding the mechanisms underlying both insomnia and CBT for insomnia, identifying key targets for maximizing CBT outcomes, and considerations for future scale refinement.

Understanding the beliefs that are key in insomnia can aid our understanding of how cognition contributes to insomnia. In Study 1, 16 DBAS items were identified that discriminated primary insomnia sufferers from good sleepers. The majority of these items connoted beliefs pertaining to the adverse consequences after poor sleep, or to losing control of sleep, and the primary insomnia sufferers showed stronger endorsement of these themes than did our normal sleepers. These 2 sets of beliefs approximate the 2 core pathologic beliefs of hopelessness (e.g., “There’s little chance of getting better”) and helplessness (e.g., “There’s nothing I can do…”) found across other disorders, such as clinical depression or generalized anxiety disorder. In these other disorders, maladaptive cognitions are presumed to be activated by underlying mood states and serve to perpetuate the illness. Interestingly, the constructs of hopelessness and helplessness were postulated as core cognitive insomnia-perpetuating agents in the first DBAS paper, and our findings from Study 1 appear consistent with that notion.

Previous studies have supported the idea that insomnia sufferers’ global DBAS scores, as well as scores on selected items, decline over the course of CBT. Given that CBT is designed, in part, to modify sleep-interfering attitudes, examination of those items that change with this treatment provides us useful information about the cognitive processes in primary insomnia and the mechanisms of CBT. Our results from Study 2 showed 8 items that declined significantly more through CBT than they did in response to alternate behavioral therapies. Of these 8 items, 6 were included in the 10-item pool previously reported to be sensitive to CBT effects. Several of the items we found that declined specifically with CBT were those closely related to both stimulus control and sleep-restriction instructions (e.g., “I need 8 hours to function,” “Need to catch up on lost sleep,” “Spend more time in bed to get more sleep”). Other items related to control and predictability, or managing the effects of insomnia (e.g., “Worried may lose control over sleep,” “Can’t predict sleep,” or “Poor sleep disturbs daytime mood”). CBT appears to have beneficial effects in all areas of maladaptive sleep cognitions except for patients’ beliefs about what causes insomnia. However, the effect of CBT on primary insomnia patients’ beliefs relating to the causes of their sleep problems remains questionable, since the DBAS includes only 2 items to assess this theme.

The results from Study 3 add to those of Studies 1 and 2 by identifying potentially important targets for maximizing CBT outcomes. It was expected that a pretreatment-to-posttreatment CBT decline in beliefs important in the protraction of primary insomnia would relate to other indexes of clinical improvement.
There were 8 items that declined through our CBT intervention and related to clinical outcomes on a global insomnia rating, self-efficacy rating, and/or sleep-log WASO. Many of these items were related to the theme of control/predictability, suggesting that declines in patients’ sleep-specific sense of helplessness are associated with insomnia-symptom improvement. There were also improvements on 2 items relating to beliefs about sleep-promoting habits that were related to improvements in both global insomnia symptoms and self-efficacy.

Curiously, there were 6 items that related to indexes of clinical improvement but did not differentiate insomnia patients from good sleepers. These items were “Need 8 hours to function” (#1), “I should stay in bed and try harder” (#7), “Insomnia is due to aging” (#14), “Can’t function without adequate sleep” (#18), “Insomnia due to a chemical imbalance” (#24), and “Medication is the only solution” (#27). This is a perplexing finding, as disease-sustaining beliefs are presumably activated during the active phase of the disorder. In the case of these 6 items, declining scores related to clinical improvement, but they did not appear to be activated during the acute phase (e.g., they did not distinguish those with from those without the disorder).

Perhaps these unexpected results were due to demand characteristics associated with CBT. In CBT, beliefs are assessed at pretreatment, followed by extensive psychoeducation about how certain beliefs about sleep are maladaptive, and then the same beliefs are reassessed after treatment. The implicit expectation that these beliefs should change may lead some patients to acquiesce and rate items relevant to the sleep education received as very low after treatment. This may be especially true for the 3 DBAS items that showed CBT-specific changes but neither discriminated primary insomnia sufferers from normal sleepers nor related to any other index of clinical improvement. Given this possibility, future research both to assess the demand characteristics of CBT and to determine the mechanistic relevance of the 3 DBAS items mentioned to primary insomnia may prove useful.

An alternative explanation for our unexpected results is that the beliefs assessed by these 6 items mentioned above serve as mediators of treatment change through increasing treatment adherence. For example, if a poor sleeper believes that 8 hours is necessary for optimal functioning (#1) or that increasing time spent in bed or sleep effort promotes sleep (#2 and #6), it could be difficult to adhere to sleep-restriction or stimulus-control instructions without prior modification of these beliefs. Likewise, the belief that insomnia is due to a chemical imbalance could conceivably undermine adhering to CBT, as it would be reasonable for such patients to assume that a chemical imbalance would be better remedied by pharmacotherapy.

We suspected that changes in key beliefs that are present during the active phase of the disorder (e.g., those items that distinguish good sleepers from primary insomnia sufferers) would occur in response to CBT or at least discriminate CBT responders (i.e., patients classified as improved) from nonresponders (i.e., those rated unimproved). However, 7 of the 16 DBAS items (i.e., items 4, 11, 13, 15, 21, 23, 30) that discriminated primary insomnia sufferers from good sleepers neither changed significantly in response to CBT nor related to posttherapy improvement status of those receiving this treatment. Since these items are useful discriminators of primary insomnia sufferers, the specific beliefs they assess should be investigated as possible cognitive risk factors for future problems with insomnia. The identification of such items may also highlight a shortcoming of our CBT intervention. Specifically, these items may connote “gaps” in the cognitive therapy our CBT offers, so it may be useful to augment our cognitive module to address these beliefs.

In addition to suggesting the mechanistic relevance of various DBAS items, our results also suggested that 5 of the DBAS items (i.e., items 3, 4, 9, 26 and 29) may have no relevance to primary insomnia or its treatment. These items did not discriminate primary insomnia and normal sleeper groups, change significantly with CBT, or relate to indexes of improvement. However, it is possible that some of these items may be relevant to insomnia in selected populations. For example, 2 of the items relating to aging (e.g., “Because getting older, need less sleep” and “Because getting older, should go to bed earlier”) have proven useful in discriminating older adults with and without insomnia. Similarly, another 1 of the items relating to needing a nightcap to sleep (item 26) may have utility with those who use alcohol as a sleep aid. Hence, further scrutiny of these items may prove useful in certain settings.

The present results also may be used to guide clinicians and researchers in their decisions as to which of the currently available DBAS versions to use. In addition to the 30-item DBAS used herein, abbreviated 10-item11 and 16-item22 versions are available. For the reader’s convenience, we have noted the items contained in these abbreviated versions, along with the other summary information provided in Table 4. Given the findings summarized in this table, we recognize that 1 version of the DBAS may appear to be most efficient or appropriate for some applications, whereas another version may be viewed as most useful for others. However, the use of varied versions of DBAS in research may make cross-study comparisons difficult and, thus, slow progress in our understanding of the relevance of sleep-related beliefs to insomnia. Thus, rather than encouraging the use of varied DBAS versions, perhaps the findings reported herein could contribute to a consensus among insomnia researchers as to which of these versions represents the most theoretically and pragmatically useful instrument. In our view, the most omnibus version of the DBAS would have good psychometric properties but would also differentiate the beliefs important in insomnia from sleep beliefs that are found in those without insomnia (e.g., good sleepers) and would detect treatment response to a treatment that specifically targets maladaptive cognitions.

The findings reported herein must be considered within the context of a few methodologic caveats. Despite its strengths, the DBAS includes a small number of items that assess beliefs relating to sleep needs and causal attributions, and expansion of these scales may be important. There may be additional beliefs that are important in insomnia but currently are not included on the DBAS. Studies 2 and 3 were conducting using our laboratory’s CBT model, and it is possible that somewhat different findings would have been obtained with other versions of this treatment. There were only a limited number of CBT outcomes considered, and it is possible that other indexes (e.g., sleep-onset latency or daytime sleepiness ratings) may better relate to posttreatment belief change. Whereas the DBAS was modestly correlated with 2 of the clinical outcome measures (ISQ and SES), the DBAS does share method variance (e.g., they all are paper-and-pencil measures) with these other instruments. As such, use of such measures may provide a somewhat inflated view of the relevance of cognitive changes to clinical improvement in insomnia therapy.
Finally, our microanalytic approach of examining changes in individual items over time admittedly is encumbered with possible measurement error due to the inherent unreliability of single items. Although our large sample and conservative statistical approach (e.g., use of MANOVA) may have offset this problem somewhat, our findings clearly warrant replication. Despite these various limitations, our results support the utility of the DBAS in insomnia research and provide some insights into the specific sleep-related beliefs that warrant treatment consideration.

ACKNOWLEDGEMENTS

This study was supported by the Department of Veterans Affairs Merit Review Grant #0009 and the National Institute of Mental Health grant # R01-MH48187 awarded to Dr. Edinger.

REFERENCES